Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater.

Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater.

Chemosphere. 2019 Aug 10;237:124567

Authors: Kumar V, Dwivedi SK

Abstract
Hexavalent chromium reduction by microbes can mitigate the chromium toxicity to the environment. In the present study Cr[VI] tolerant fungal isolate (CR500) was isolated from electroplating wastewater, was able to tolerate 800 mg/L of Cr[VI. Based on the ITS region sequencing, the isolate was identified as Aspergillus flavus CR500, showed multifarious biochemical (reactive oxygen species, antioxidants response and non-protein thiol) and morphological (protrusion less, constriction and swelling/outwards growth in mycelia) response under Cr[VI] stress. Batch experiment was conducted at different Cr[VI] concentration (0-200 mg/L) to optimize the Cr[VI] reduction and removal ability of isolate CR500; results showed 89.1% reduction of Cr[VI] to Cr[III] within 24 h and 4.9 ± 0.12 mg of Cr per gram of dried biomass accumulation within 144 h at the concentration of 50 mg/L of Cr[VI]. However, a maximum of 79.4% removal of Cr was recorded at 5 mg/L within 144 h. Fourier-transform infrared spectroscopy, energy dispersive x-ray spectroscopy and X-ray diffraction analysis revealed that chromium removal also happened via adsorption/precipitation on the mycelia surface. Fungus treated and without treated 100 mg/L of Cr[VI] solution was subjected to phytotoxicity test using Vigna radiata seeds and result revealed that A. flavus CR500 successfully detoxified the Cr[VI] via reduction and removal mechanisms. Isolate CR500 also exhibited efficient bioreduction potential at different temperature (20-40 °C), pH (5.0-9.0), heavy metals (As, Cd, Cu, Mn, Ni and Pb), metabolic inhibitors (phenol and EDTA) and in sterilized tannery effluent that make it a potential candidate for Cr[VI] bioremediation.

PMID: 31549665 [PubMed – as supplied by publisher]

Source: Industry