Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi.

Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi.

Environ Monit Assess. 2019 Sep 07;191(10):622

Authors: Khan I, Ali M, Aftab M, Shakir S, Qayyum S, Haleem KS, Tauseef I

Abstract
Bioleaching of heavy metals from industrial contaminated soil using metallotolerant fungi is the most efficient, cost-effective, and eco-friendly technique. In the current study, the contaminated soil samples from Hattar Industrial Estate revealed a total lead (Pb) and mercury (Hg) concentration of 170.90 mg L-1 and 26.66 mg L-1, respectively. Indigenous metallotolerant fungal strains including Aspergillus niger M1, Aspergillus fumigatus M3, Aspergillus terreus M6, and Aspergillus flavus M7 were isolated and identified by pheno- and genotyping. A. fumigatus and A. flavus of soil sample S1 showed higher efficiency for Pb removal (99.20% and 99.30%, respectively), in SDB medium. Likewise, A. niger and A. terreus of soil sample S2 showed higher efficiency for Hg removal (96% and 95.50%, respectively), in YPG medium. Furthermore, the maximum uptake efficiency for Pb removal (8.52 mg g-1) from soil sample S1 was noticed for A. fumigatus in YPG medium, while the highest uptake efficiency (4.23 mg g-1) of A. flavus M2 strain was observed with CYE medium. Similarly, the maximum uptake efficiency of 0.41 mg g-1 and 0.44 mg g-1 for Hg removal from soil sample S2 was found for A. niger and A. terreus strains, respectively, in CYE medium. Thus, in order to address the major issue of industrial waste pollution, indigenous fungal strains A. fumigatus (M1) and A. terreus (M7), isolated in this study, could be used (ex situ or in situ) to remediate soils contaminated with Pb and Hg.

PMID: 31494726 [PubMed – in process]

Source: Industry