Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances.
Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances.
Int J Food Microbiol. 2020 Jun 25;333:108773
Authors: Menezes NMC, Longhi DA, Ortiz BO, Junior AF, de Aragão GMF
Abstract
The present work aimed to evaluate and to model the influence of UV-C light treatments with different irradiances (6.5, 13, 21, and 36 W/m2) on Aspergillus fischeri and Paecilomyces niveus ascospores inactivation in clarified apple juice. Approximately 5.0 and 6.0 log CFU/mL spores of P. niveus and A. fischeri, respectively, were suspended in 30 mL of clarified apple juice (pH 3.8, 12 ± 0.1°Brix) and exposed to UV-C light at different irradiances (as above) and exposure times (0 to 30 min). The first-order biphasic model was able to describe the experimental data with good statistical indices (RMSE = 0.296 and 0.308, R2 = 0.96 and 0.98, for P. niveus and A. fischeri respectively). At the highest irradiance level tested (36 W/m2), the UV-C light allowed the reduction of 5.7 and 4.2 log-cycles of A. fischeri and P. niveus ascospores, respectively, in approximately 10 min. P. niveus was the most UV-C resistant mould. The results showed that, to a defined UV-C fluence, a change in the level of either time or UV-C irradiance did not affect the effectiveness of UV-C light for A. fischeri and P. niveus inactivation. Thus, the modeling of the inactivation as a function of the UV-C fluence allowed the estimation of the primary model parameters with all experimental data and, consequently, no secondary models were needed. The model parameters were validated with experiments of variable UV-C fluences. Accordingly, experimental results allowed to conclude that UV-C treatment at the irradiances tested is a promising application for preventing A. fischeri and P. niveus spoilage of juices.
PMID: 32739634 [PubMed – as supplied by publisher]
Source: Industry