Differential susceptibility of mycotoxin-producing fungi to distinct antifungal proteins (AFPs)

Food Microbiol. 2021 Aug;97:103760. doi: 10.1016/j.fm.2021.103760. Epub 2021 Feb 8.

ABSTRACT

The global challenge to prevent fungal spoilage and mycotoxin contamination on foods and feeds require the development of new antifungal strategies. Filamentous fungi encode diverse antifungal proteins (AFPs), which offer a great potential for the control of contaminant fungi. In this study, four AFPs from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC) belonging to classes A, B and C, were tested against a representative panel of mycotoxin-producing fungi. They included a total of 38 strains representing 32 different species belonging to the genera Alternaria, Aspergillus, Byssochlamys, Fusarium and Penicillium. PeAfpA exhibited a potent antifungal activity, since the growth of all tested fungi was completely inhibited by concentrations ranging from 0.5 to 16 μg/mL. PdAfpB and PeAfpB, although less effective than PeAfpA, showed significant activity against most of the mycotoxigenic fungi tested. Importantly, PeAfpC previously described as inactive, showed a powerful inhibition against B. spectabilis strains, which are important spoilage and mycotoxin fungi in pasteurized foods. Although less effective than in liquid media, AFPs affected fungal growth on solid media. This study also underlines the potential of these AFPs, in particular PeAfpA, as future antifungal agents for applications in foods, on growing crops or during postharvest storage.

PMID:33653530 | DOI:10.1016/j.fm.2021.103760

Source: Industry