Diversity and composition of the North Sikkim hot spring mycobiome using a culture-independent method

Folia Microbiol (Praha). 2021 Mar 23. doi: 10.1007/s12223-021-00859-z. Online ahead of print.


Fungi are considered to be the most resilient and economically important microbial community that can easily survive and optimally grow under a wide range of growth conditions. Thermophilic fungi from the geothermal sources have been less pondered upon and lie unexplored. Here, a microbiome approach was conducted to understand the concealed world of the environmental mycobiota from the two hot springs of North Sikkim district located in North-east India. The solfataric muds from the hot springs were analyzed. In both the samples, on the basis of genus level classification, genus Fusarium had the highest abundance followed by Colletotrichum, Pochonia, Pyricularia, Neurospora, etc. Analyzing the predicted genes, the functional proteins of New Yume Samdung mycobiome were found to be dominated by the genera Fusarium (22%), Trichoderma (12%), and Aspergillus (11%), whereas in the case of Old Yume Samdung, it was dominated by the genera Aspergillus (11%), Saccharomyces (6%), and Fusarium (5%). Interestingly, in the studied mycobiome, environmental yeasts were also detected. From the functional metagenomics, sulfate adenylatetransferase (SAT) proteins for sulfur assimilation were found in some of the fungal reads. Toxin protein reads such as AM-toxin biosynthesis proteins, AF-toxin biosynthesis proteins, Gliotoxin biosynthesis proteins, and aflatoxin biosynthesis proteins were detected in the mycobiomes.

PMID:33755859 | DOI:10.1007/s12223-021-00859-z

Source: Industry