Molecular characterization of non-biogenic amines producing <em>Lactobacillus plantarum</em> GP11 isolated from traditional pickles using HRESI-MS analysis

J Food Sci Technol. 2021 Jun;58(6):2216-2226. doi: 10.1007/s13197-020-04732-8. Epub 2020 Aug 19.

ABSTRACT

Fungal spoilage and toxic biogenic amine production is a major risk in fermented products. Therefore, the selection of nontoxic biogenic amines producing probiotic bacteria plays a vital role in the fermentation process. In the present study, a total of 18 bacterial isolates were isolated from eight different homemade pickle samples and 15 lactic acid bacteria (LAB) were identified based on biochemical tests. Out of which only seven isolates (GP1, GP2, GP3, GP4, GP5, GP9, and GP11) exhibited antifungal activity against pickle contaminant Aspergillus sp and Penicillium sp. Among the potential LAB isolates, GP11 showed the highest antifungal activity against Aspergillus sp and Penicillium sp with a zone of inhibition 28.33 ± 0.57and 19.66 ± 0.57 mm respectively. The potent LAB isolates were tested for amino acid decarboxylase activity, in which GP2, GP3, GP4, and GP5 exhibited to produce tyramine, cadaverine, and phenylethylamine while GP1 and GP5 have produced tyramine and phenylethylamine respectively. However, highly potent antifungal active isolate GP11 did not produce biogenic amine. Further, GP1, GP9, and GP11 were subjected to confirmation of biogenic amines production using HRESI-MS. HRESI-MS analysis of the GP1 and GP9 sample confirmed the presence of phenylethylamine and tyramine respectively. Interestingly, GP11 isolate did not show any biogenic amines production and GP11 was further subjected to 16S rRNA typing and identified as Lactobacillus plantarum. On in situ pickle sensory evaluation, GP11 lactopickle was graded as very good quality when compared to traditional one. Therefore L. plantarum GP11 could be developed as an ideal starter culture for the fermented production of a pickle.

PMID:33967318 | PMC:PMC8076391 | DOI:10.1007/s13197-020-04732-8

Source: Industry