Consecutive 4-year Elevated Atmospheric CO<sub>2</sub> on Shaped Microbial Communities in the Rhizosphere Soil of <em>Robinia pseudoacacia</em> L. Seedlings Grown in Pb-contaminated Soils

Huan Jing Ke Xue. 2021 Jun 8;42(6):3046-3055. doi: 10.13227/j.hjkx.202009023.


Elevated atmospheric CO2 could affect the speciation of heavy metals in rhizosphere soils by changing root exudates, thereby influencing soil microecosystem in the rhizosphere. Therefore, understanding the function of heavy metals in soils on rhizospheric ecology under elevated atmospheric CO2 scenarios is highly important. Here, we investigated the combined effects of a four-year period of elevated air CO2 concentrations[(700±27) μmol·L-1] and Pb-contamination (15.6 mg·kg-1 and 515.6 mg·kg-1) on the soil rhizopheric microbial community of Robinia pseudoacacia L. seedlings. Significant (P<0.05) effects of CO2, Pb, and their interaction on bacterial richness and fungal diversity were observed. Relative to Pb exposure alone, elevated CO2 significantly increased pH, total C, total N, and water-soluble organic carbon, and the C/N ratio under Pb exposure (P<0.05) and significantly decreased total and soluble Pb content (P<0.05). The richness and diversity of bacteria increased (P<0.05), fungal richness decreased (P<0.05), and microbial diversity increased (P<0.05) under the combined treatments relative to Pb contamination alone. The changes in the relative abundance of the top two dominant bacterial and fungal genera were not significant; however, differences in the relative abundances of other groups, such as Anaerolineaceae, Solirubrobacterales, Eurotiomycetes, Aspergillus, and Trichocomaceae, were significant between the different treatments. According to a redundancy analysis, total C and soluble Pb had a significant influence (P<0.05) on the dominant bacterial genera, and total C affected (P<0.05) the dominant genera in the fungal community. These results suggest that the responses of soil environmental factors to the combination of elevated atmospheric CO2 and Pb could shape soil microbial community structure in the rhizosphere of R. pseudoacacia seedlings.

PMID:34032105 | DOI:10.13227/j.hjkx.202009023

Source: Industry