Multi-resistance to non-azole fungicides in Aspergillus fumigatus TR(34)/L98H azole resistant isolates
Antimicrob Agents Chemother. 2021 Jun 21:AAC0064221. doi: 10.1128/AAC.00642-21. Online ahead of print.
ABSTRACT
Drug resistance is a worldwide problem affecting all pathogens. The human fungal pathogen Aspergillus fumigatus coexists in the environment with other fungi targeted by crop protection compounds being unintentionally exposed to the selective pressure of multiple antifungal classes leading to the selection of resistant strains. A. fumigatus azole resistant isolates are emerging in both the clinical and environmental setting. Since their approval, azole drugs have dominated the clinical treatment for aspergillosis infections, and the agriculture fungicide market. However, other antifungal classes are used for crop protection including benzimidazoles (MBC), strobilurins (QoIs) and succinate dehydrogenase inhibitors (SDHIs). Mutations responsible for resistance to these fungicides have been widely researched in plant pathogens, but it has not been explored in A. fumigatus. In this work, the genetic basis underlying resistance to MBCs, QoIs and SDHIs were studied in azole susceptible and resistant A. fumigatus strains. E198A/Q and F200Y mutations in the β-tubulin conferred resistance to MBCs, G143A and F129L substitutions in the Cytochrome b to QoIs and H270R/Y mutations in SdhB to SDHIs. Characterization of the susceptibility to azoles showed a correlation between strains resistant to these fungicides and the ones with TR-based azole resistance mechanisms. Whole genome sequencing analysis showed a genetic relationship among fungicide multi resistant strains, which grouped together into subclusters that only included strains carrying the TR-based azole resistance mechanisms, indicating a common ancestor/evolution pattern and confirming the environmental origin of this type of azole resistant A. fumigatus.
PMID:34152819 | DOI:10.1128/AAC.00642-21
Source: Industry