The effect of biosynthesized selenium nanoparticles on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and A. flavus

Biotechnol Prog. 2021 Aug 30:e3206. doi: 10.1002/btpr.3206. Online ahead of print.

ABSTRACT

The application of biological nanoparticles (NPs) can be considered as a way to overcome the problem of antifungal resistance in pathogenic fungi. This study takes a new approach to biosynthesized NPs influence on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and A. flavus, and comparison with antifungal agents. Selenium NPs (Se-NPs) were biosynthesized using Aspergillus strains and their production was proved by several methods including, UV-Vis, XRD, FTIR, FESEM, and EDX techniques. The minimum inhibitory concentrations (MICs) of Aspergillus strains were determined using the CLSI M38-A2 broth microdilution method. The differences in expression levels of CYP51A and HSP90 genes were examined between untreated and treated of A. fumigatus and A. flavus using itraconazole and amphotericin B and biosynthesized Se-NPs through real-time PCR. After confirming the results of NPs synthesis, the MIC of itraconazole and amphotericin B against A. fumigatus and A. flavus was 4 μg/mL. Based on the real-time PCR results, the obtained ∆∆CTs for these strains were -0.18, -1.46, and -1.14. Whereas the MIC values for treated samples with Se-NPs have decreased to 0.5 μg/mL, and the ∆∆CTs for these were -0.25, -1.76, and -1.68. The expression of CYP51A and HSP90 genes was significantly down-regulated through the use of Se-NPs against A. fumigatus and A. flavus. This article is protected by copyright. All rights reserved.

PMID:34460147 | DOI:10.1002/btpr.3206

Source: Industry