Limitations of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Aspergillus species

Med Mycol. 2022 Jan 19:myab084. doi: 10.1093/mmy/myab084. Online ahead of print.


This study aimed to detect the identification limitations for Aspergillus species from patients or the environment based on MALDI-TOF MS analysis. A total of 209 Aspergillus isolates were selected in this study. One hundred and sixty-eight of the strains were selected as challenge strains for MALDI-TOF MS analysis, while the remaining 41 strains were used to construct a supplementary database. The 168 challenge strains were identified by the Bruker Filamentous Fungi Library v1.0 (the Bruker Library) and identified again using the Bruker Library combined with the supplementary database (the combined database). The sensitivity of MALDI-TOF MS with the Bruker Library alone and with the combined database in identifying the challenge strains at the species level was 64.3% and 85.7%, respectively. With the combined database, the sensitivity of MALDI-TOF MS in identifying strains in Aspergillus sections Fumigati, Flavi, Nigri, Terrei, and Nidulantes was 100%, 86.5%, 76.1%, 100%, and 80%, respectively, and the sensitivity in identifying strains of other Aspergillus species was 71.4%. The specificity of MALDI-TOF MS in identifying strains in all Aspergillus sections at the species level was 100%. Even when using the combined database, MALDI-TOF MS analysis showed some misidentification for the species A. niger, A. welwitschiae, A. luchuensis, A. flavus and A. sydowii. In conclusion, with the combined database, MALDI-TOF MS showed good performance in identifying the species in Aspergillus sections Fumigati and Terrei but limited performance in distinguishing some closely related species in sections Nigri, Flavi and Nidulantes.

PMID:35044460 | DOI:10.1093/mmy/myab084

Source: Industry