Exploring the response patterns of strong-flavor baijiu brewing microecosystem to fortified Daqu under different pit ages

Food Res Int. 2022 May;155:111062. doi: 10.1016/j.foodres.2022.111062. Epub 2022 Feb 24.

ABSTRACT

The fermentation of strong-flavor baijiu depends largely on the evolution of the microbial community that originated from Daqu and pit mud (PM). Applying fortified Daqu (FD) has been proven to be an effective strategy to improve the quality and yield of baijiu. However, it is unclear what the effects of FD on the liquor brewing microecosystem under different pit ages because of the temporal heterogeneity of the PM community. Taking 2-year (new) and 40-year (aged) pits as the objects, the influence of FD on the metabolic profile, physicochemical parameters, and community diversity in Zaopei and PM was investigated by polyphase detecting approaches. Present results showed that the metabolic profiles of Zaopei were significantly improved by FD, whereas those of PM were mainly dependent on pit age. Aspergillus, Caproiciproducens, and Methanosarcina were more abundant in the aged pit, while Kazachstania, Lactobacillus, and Sphingomonas dominated in the new pit, whether in Zaopei or in PM. The interaction relationships among the communities were also altered by FD, and the co-occurrence network, especially the increased links between archaea and bacteria in the new pit. Notably, this interaction in the aged pit distinctly affected the hexanoic acid content based on the Mantel test. The results of PICRUSt2 analysis inferred that FD perhaps improved the interspecies hydrogen transfer in the new pit and increased the carbon flow of hexanoic acid production during chain elongation in the aged pit. These results provide new insights into the production of high-quality strong-flavor baijiu and the aging of PM.

PMID:35400440 | DOI:10.1016/j.foodres.2022.111062

Source: Industry