Heterologous production of ascofuranone and ilicicolin A in Aspergillus sojae

J Gen Appl Microbiol. 2022 Apr 13. doi: 10.2323/jgam.2021.08.001. Online ahead of print.


Ascofuranone and its precursor, ilicicolin A, are secondary metabolites with various pharmacological activities that are produced by Acremonium egyptiacum. In particular, ascofuranone strongly inhibits trypanosome alternative oxidase and represents a potential drug candidate against African trypanosomiasis. However, difficulties associated with industrial production of ascofuranone by A. egyptiacum, specifically the co-production of ascochlorin, which inhibits mammalian respiratory chain complex III at low concentrations, has precluded its widespread application. Therefore, in this study, ascofuranone biosynthetic genes (ascA-E and H-J) were heterologously expressed in Aspergillus sojae, which produced very low-levels of endogenous secondary metabolites under conventional culture conditions. As a result, although we obtained transformants producing both ilicicolin A and ascofuranone, they were produced only when an adequate concentration of chloride ions was added to the medium. In addition, we succeeded in increasing the production of ilicicolin A, by enhancing the expression of the rate-determining enzyme AscD, using a multi-copy integration system. The heterologous expression approach described here afforded the production of both ascofuranone and ilicicolin A, allowing for their development as therapeutics.

PMID:35418536 | DOI:10.2323/jgam.2021.08.001

Source: Industry