Boosting the Anticancer Activity of Aspergillus flavus "endophyte of Jojoba" Taxol via Conjugation with Gold Nanoparticles Mediated by γ-Irradiation

Appl Biochem Biotechnol. 2022 Apr 19. doi: 10.1007/s12010-022-03906-8. Online ahead of print.

ABSTRACT

Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.

PMID:35438406 | DOI:10.1007/s12010-022-03906-8

Source: Industry