The Loss-of-Function Mutation <em>aldA67</em> Leads to Enhanced α-L-Rhamnosidase Production by <em>Aspergillus nidulans</em>

J Fungi (Basel). 2022 Nov 9;8(11):1181. doi: 10.3390/jof8111181.


In Aspergillus nidulans L-rhamnose is catabolised to pyruvate and L-lactaldehyde, and the latter ultimately to L-lactate, via the non-phosphorylated pathway (LRA) encoded by the genes lraAD, and aldA that encodes a broad substrate range aldehyde dehydrogenase (ALDH) that also functions in ethanol utilisation. LRA pathway expression requires both the pathway-specific transcriptional activator RhaR (rhaR is expressed constitutively) and the presence of L-rhamnose. The deletion of lraA severely impairs growth when L-rhamnose is the sole source of carbon and in addition it abolishes the induction of genes that respond to L-rhamnose/RhaR, indicating that an intermediate of the LRA pathway is the physiological inducer likely required to activate RhaR. The loss-of-function mutation aldA67 also has a severe negative impact on growth on L-rhamnose but, in contrast to the deletion of lraA, the expression levels of L-rhamnose/RhaR-responsive genes under inducing conditions are substantially up-regulated and the production of α-L-rhamnosidase activity is greatly increased compared to the aldA+ control. These findings are consistent with accumulation of the physiological inducer as a consequence of the loss of ALDH activity. Our observations suggest that aldA loss-of-function mutants could be biotechnologically relevant candidates for the over-production of α-L-rhamnosidase activity or the expression of heterologous genes driven by RhaR-responsive promoters.

PMID:36354948 | DOI:10.3390/jof8111181

Source: Industry